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Abstract—Embedded manycore architectures offer energy-
efficient super-computing capabilities but are notoriously diffi-
cult to program with traditional parallel programming Appli-
cation Programming Interfaces (APIs). To address this chal-
lenge, dataflow Models of Computation (MoCs) are increasingly
used as their high-level of abstraction eases the automation of
computation mapping, memory allocation, and communication
management. Reconfigurable dataflow is a class of dataflow MoC
that fosters a unique trade-off between application dynamicity
and predictability. This demonstration presents the first embed-
ded runtime manager enabling the execution of reconfigurable
dataflow graphs on a Non-Uniform Memory Access (NUMA)
architecture. The proposed runtime dynamically deploys recon-
figurable dataflow graphs onto clustered Processing Elements
(PEs) through the Networks-on-Chips (NoCs) of the manycore
architecture. An open-source implementation on the Kalray
MPPA® processor demonstrates the feasibility and the great
potential of such a runtime.

I. INTRODUCTION

HE ever increasing performance of embedded systems is

driven by the introduction of more and more parallel ar-
chitectures. Following this trend, the era of manycore architec-
tures, that massively embed several processor cores, has now
begun. Unlike classic multicore architectures, which integrate
tens of complex high-performance Processing Elements (PEs)
in a single chip, the idea behind manycore architectures is to
sacrifice the processing capability of individual PEs, in order
to gain silicon area to integrate more PEs. Hence, manycore
architectures integrating several hundreds of PEs have been
commercialized, offering competitive performance for embed-
ded systems, especially in terms of energy efficiency [1].

At the same time, more than 80% of embedded software
is still written using procedural languages such as C/C++.
Procedural language are based on control-dependent sequences
of instructions manipulating a pool of shared variables. These
characteristics make procedural languages inherently ill-suited
for programming manycore architectures, where hundreds of
PE communicate through complex on-chip interconnects and
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distributed Non-Uniform Memory Access (NUMA) archi-
tectures. Hence, there is a widening software productivity
gap between the developer productivity, and the increasing
complexity of code that must be written to fully exploit the
computing power offered by latest embedded processors.

Dataflow Models of Computation (MoCs) have been intro-
duced in an effort to bridge this software productivity gap. An
application specified with a dataflow graph consists of a set of
processing entities, named actors, connected by a set of First-
In First-Out queues (FIFOs) transmitting data quanta, named
data-tokens, between actors. An actor starts its preemption-free
execution (it fires) when its input FIFOs contain enough data-
tokens. The number of data-tokens consumed and produced
during the execution of an actor is specified by a set of firing
rules. The dataflow semantics naturally captures parallel and
data-driven computations, which makes dataflow MoCs natu-
rally suitable for programming modern parallel architectures.

This demonstration focuses on the reconfigurable class of
dataflow MoCs, like the Parameterized and Interfaced Syn-
chronous Dataflow (PiSDF) MoC [2], which allows firing
rules of actors to be reconfigured non-deterministically at
restricted points in the application execution. The software
component responsible for managing the reconfigurations of
the graph is called an embedded runtime. The embedded
runtime is notably responsible for adapting the mapping of
the actors computations and the allocation of the data FIFOs
on the computing resources of the target architecture when a
reconfiguration of firing rules occurs.

This demonstrator shows the first implementations of an
embedded runtime for reconfigurable dataflow graphs, namely
the SPIDER runtime [3], on an MPPA®.

II. CONTEXT

A. MPPA® Processor Architecture

The Kalray Multi-Purpose Processor Array (MPPA)®
manycore architecture is designed to achieve high energy
efficiency and deterministic response times for compute-
intensive embedded applications. Figure 1 shows the hierar-
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Fig. 1: MPPA® Processor

chical computing resources of MPPA featuring the VLIW-core
(5-issue), the compute cluster which is equipped with 2 MB of
scratchpad-only-memory and the manycore processor which
integrates the Network-on-Chip (NoC) inter-connnecting the
18 NUMA nodes (16 compute clusters and 2 10s). The MPPA
is a DMA-based manycore architecture. Any computations
are driven by DMA data transfers over the NoC and the
software runtime is in charge of configuring the DMA NoC
interface. Indeed the compute clusters do not have access
to the main memory (DDR) and to other compute clusters’
memory making the MPPA a challenge to be programmed as
all communications are managed by the software.

B. PiSDF

This demonstrator relies on the Parameterized and Inter-
faced Synchronous Dataflow (PiSDF) [2] MoC. The semantics
of the PiSDF MoC is depicted in Figure 2a. In addition to
dataflow actors, FIFOs, and data ports, the PiISDF MoC defines
a hierarchy mechanism, explicit parameters, parametrization
dependencies, and configuration ports as elements of the model
semantics. The hierarchy mechanisms makes it possible to
specify the internal behavior of an actor with a PiSDF sub-
graph, instead of source code (generally C/C++). A parameter
is a node of the PiSDF graph associated to an integer value.
Integer production and consumption rates of actors can be
specified with expressions depending on parameters connected
to the actor through parameterization dependencies and con-
figuration ports. The output of an actor is able to modify
at runtime the input parameter of another actor; therefore,
enabling dynamicity if needed by the application (remains
static if not used). The dynamicity on an input parameter of an
actor will influence the graph transformation, the parallelism,
the memory allocation and the scheduling at runtime. Such a
challenge is resolved by the SPIDER runtime at the beginning
of each iteration of a (sub)graph, if a reconfiguration of a
parameter value was triggered. A graph iteration designates
a sequence of actor firings during which all actors of the
(sub)graph are executed at least once, and the final number
of data tokens in each FIFO is equal to the initial state.

C. SPIDER

The Synchronous Parameterized and Interfaced Dataflow
Embedded Runtime (SPIDER) runtime exhibits a master/slave
organization which eases its porting on a manycore architec-
ture. Each PE of the target architecture is managed by a slave
Local Runtime (LRT) process with a dedicated job queue. As
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Fig. 2: The PiSDF MoC.

all of the in-chip scratchpad-memories of MPPA is limited and
managed at runtime by the software, the memory footprint of
each LRT must be kept as low as possible. Indeed for efficient
graph executions, the local scratchpad-memory of the node
should always have enough free space to accommodate the
data tokens and the code of actors executed by the associated
LRTs. The master Global Runtime (GRT) or host process,
which handles graph reconfigurations, mapping and scheduling
heuristics, and application profiling, requires a substantially
larger memory footprint than LRTs to handle these tasks. Thus
this master process is mapped onto the IO subsystem (host
processor) of MPPA which has direct access to the external
DDR memory. Our SPIDER implementation onto MPPA was
done using a multi-core execution model with a master core.
The SPIDER communication runtime relies on the Kalray
specific low-level one-sided communication API providing the
required mechanisms (RDMA, Queues and Remote Atomics)
to build complex parallel systems onto the MPPA.

III. DEMONSTRATOR

The demonstrator shows the first running implementation
of SPIDER onto the MPPA. The proof of concept shows a
self-adaptive implementation of an image filtering application
based on a Sobel filter and two morphological operators. At
runtime, the application reconfigures itself by changing the
number of slices the processed images are split into before
being processed in parallel. By monitoring its own execution
time, the application is able to select the configuration achiev-
ing the highest throughput, depending on the video resolution
and the number of available PEs.
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