
GAUT – A High-Level Synthesis tool for DSP applications 
 

Philippe Coussy and Ghizlane Lebreton 

  

Lab-STICC/CNRS – Universite de Bretagne-Sud– France 
http://www.gaut.fr 

 

 
Abstract 

 
GAUT is a free downloadable and an open source, High-Level 
Synthesis tool. It extracts a CDFG from a C/C++ function and 
selects, allocates, schedules and binds RTL hardware resources. 
GAUT automatically generates a RTL architecture described in 
VHDL or SystemC and composed of a controller FSM and a Data-
path. A new open source (CeCILL-B license) version of the high 
level synthesis tool (GAUT V3) has been entirely redeveloped in 
order to explore both Data and Control. The new GAUT software 
design follows a model-driven approach with the Eclipse Modeling 
Framework. GAUT can generate VHDL and SystemC descriptions 
of the output hardware architecture. 
 

1. Introduction 
 
In the SoCs context, the traditional IC design methodology relying 
on EDA tools used in a two stages design flow -a VHDL/Verilog 
RTL specification, followed by logical and physical synthesis- is no 
more suitable. However, the increasing complexity and the data 
rates of nowadays applications require efficient hardware 
implementations like dedicated accelerators or coprocessors. Thus 
actual SoC embedded DSP cores need new ESL level tools in order 
to raise the specification abstraction level up to the « algorithmic 
one ». Algorithmic descriptions enable an IC designer to focus on 
functionality and target performances rather than debugging RTL. 
Designers spend more time exploring the design space with 
multiple "what if” scenarios. They obtain a range of implementation 
alternatives, from which they select the architecture providing the 
best power/speed/gate count trade-off. Vivado HLS from Xilinx, 
CatapultC from Mentor Graphics, Cynthesizer from Forte or PICO 
from Synfora are EDA software tools enabling to capture such 
C/C++/SystemC-based algorithmic design entries and synthesize 
them into an equivalent RTL specification. GAUT is an academic 
and open source HLS tool dedicated to DSP applications.  
 

2. GAUT, a HLS tool 
 
GAUT is an academic High Level Synthesis tool [1] freely 
available under CeCILL-B licence. GAUT generates VHDL RTL 
or SystemC TLM description from C level algorithm description. 
The new version of GAUT has been entirely redeveloped in order 
to enable the exploration of both data and control dominated 
applications. GAUT takes as input a C/C++ description of the 
algorithm that has to be synthesized. The new GAUT is now based 
on a model-driven approach integrated with the Eclipse Modeling 
Framework. Its internal representation (i.e. CDFG in Figure 1) is 
based on a Control and Data Flow Graph generated from C/C++ 
thanks to a dedicated GCC plugin. Then, a generic RTL model is 
generated, and finally GAUT generates VHDL and/or SystemC 

descriptions of the output hardware architecture thanks to dedicated 
model transformations.  
The main steps of the HLS process are: 

• Compilation: generates a formal modeling of the 
specification 

• Selection: chooses the architecture of the operators 
• Allocation: defines the number of operators for each 

selected type 
• Scheduling: defines the execution date of each operation 
• Binding (or Assignment): defines which operator will 

execute a given operation and defines which memory 
element will store a data 

• Architecture generation: writes out the RTL source code in 
the target language e.g. VHDL 

 

Figure 1: Proposed high-level synthesis flow  

The generated architecture is described in figure 2. In this 
architecture, the communication unit (i.e. COMU) deals with data 
exchanges with the rest of the system and can be specified as FIFO, 
Memory Bus or Handshake , the memory unit (i.e. MEMU) stores the 
data and the processing unit (i.e. PU) processes these data. This latter 
is a data-path composed of logic and arithmetic operators, storage 
elements, steering logic and a controller finite state machine (FSM). 
 

 
 

Figure 2: Target architecture 



To validate the generated architecture, a test bench is automatically 
generated to apply stimulus to the design and to analyze the results. 
The stimulus can be incremental, randomized or user defined values 
allowing automatic comparison with the initial algorithmic 
specification (i.e. the “golden” model). GAUT generates also 
necessary scripts to compile and simulate the design with the 
Modelsim simulator, as well as, SystemC test models. 
GAUT generates an IEEE P1076 VHDL file. The VHDL file is an 
input for commercial, off the shelf, logical synthesis tools like 
ISE/Foundation from Xilinx, Quartus from Altera or Design 
Compiler from Synopsys. GAUT generates the TCL scripts to 
execute the logic synthesis processes for Xilinx and Altera.  
 

 
 

Figure 3: Graphical User Interface 

GAUT is currently supported on Linux, Windows and MacOs. The 
IDE is based on eclipse environment (see figure 3). This 
environment allows the designer to capture and analyze the 
algorithms. An output of the analysis is a graphical view of the data 
flow graph and the control flow graph, as well as, the data-path and 
the finite state machine. The outputs of the synthesis are the RTL 
and SystemC files and a SVG view of hardware resources. 
GAUT generates protocol specific interfaces, such as FIFO, 
Memory and Handshake. This enables to execute the synthesized 
accelerators in a mixed hardware/software system. For instance, 
figure 4 is an example of a system architecture composed of several 
parts: a CPU, a memory and a “system zone” in which some parts 
are hardware descriptions synthesized GAUT, some are IP from a 
library and other parts are higher level description. All these 
elements communicate with FIFO interface, events or dedicated 
memories. 
 

 
 

Figure 4: Example of mixed hardware/software system 

3. References 
 
[1] GAUT web site: http://www.gaut.fr 
 
[2] P. Coussy. and D. Gajski and M. Meredith and A. Takach, “An 

Introduction to High-Level Synthesis,” IEEE DTC, 2009, pp. 8-17 


