
STM32Cube Overview

STM32CubeTM Introduction

• STMCubeTM is an STMicroelectronics original

initiative to ease developers life

• By reducing development efforts

• By reducing development time

• By reducing development cost, with free solutions

• STM32CubeTM applies on STM32 portfolio

2

www.st.com/stm32cube

STM32CubeMX

STM32CubeL1

STM32CubeF0
STM32CubeF1 STM32CubeF3

STM32CubeF2

STM32CubeF4

STM32CubeL0

STM32CubeL4

STM32CubeF7

STM32CubeH7

http://www.st.com/stm32cube

STM32CubeTM Overview

• STM32CubeTM is a software development platform that combines

• A PC software configuration tool called STM32CubeMX

• STM32 embedded software bricks called STM32CubeFx/Lx

3

STM32CubeMX
Configuration tool on PC

STM32Cube
STM32 Hardware abstraction layer

STM32Cube
Middleware

User code

Graphical

User

Interface

Firmware

Library

STM32CubeL4.zip
STM32CubeL1.zip

STM32CubeF1.zip
STM32CubeF0.zip

STM32CubeF3.zip
STM32CubeF2.zip

STM32CubeH7.zip

STM32CubeF4.zip

STM32CubeL0.zip

STM32CubeF7.zip

STM32Cube Work Flow 4

STM32CubeMX
Configuration tool on PC

C code generation

for initialization,

depending on user

choices

Hardware Abstraction Layer API

CMSISTCP

/IP

FAT

File

Sys.
Gfx

USB

Host /

Device

Middleware level

RTOS

STM32Cube Embedded Software deliverables

User Application

CMSIS-

DRIVER

STM32F0 STM32F1 STM32F2

STM32F7STM32F3 STM32F4

STM32L1STM32H0 STM32L0

STM32L4

5STM32CubeFx/Lx FW Package

Hardware Abstraction Layer API

HAL level

Application level Demonstrations

Evaluation

boards

Discovery

boards

Nucleo

boards

CMSIS

Utilities

Utilities

TCP/IP
FAT

File

System

Graphics
USB

Host &

Device

Middleware level

RTOS

Hardware

STM32H7

Dedicated

boards

STM32 embedded

software

Downloadable manually from www.st.com/stm32cube

or via STM32CubeMX download libraries menu

STM32CubeL4.zip

STM32CubeL1.zip

STM32CubeF1.zip

STM32CubeF0.zip

STM32CubeF3.zip

STM32CubeF2.zip

STM32CubeF7.zip

STM32CubeF4.zip

STM32CubeL0.zip

STM32CubeL4.zip

STM32CubeL1.zip

STM32CubeF1.zip

STM32CubeF0.zip

STM32CubeF3.zip

STM32CubeF2.zip

STM32CubeF7.zip

STM32CubeF4.zip

STM32CubeL0.zip

STM32CubeH7.zipSTM32CubeH7.zip

http://www.st.com/stm32cube

STM32CubeL0
Hardware Abstraction Layer

CMSIS
STM32CubeF7
Hardware Abstraction Layer

CMSIS
STM32CubeL4
Hardware Abstraction Layer

CMSIS
STM32CubeL1
Hardware Abstraction Layer

CMSIS
STM32CubeF0
Hardware Abstraction Layer

CMSIS
STM32CubeF3
Hardware Abstraction Layer

CMSIS
STM32CubeF2
Hardware Abstraction Layer

CMSIS
STM32CubeF4
Hardware Abstraction Layer

CMSIS
STM32CubeF1
Hardware Abstraction Layer

CMSIS
STM32Cube

Hardware Abstraction layer
CMSIS

STM32Cube V1
STM32CubeFx/Lx FW Package 6

• Abstraction of STM32

• Through portable APIs

• High STM32 coverage

• Most of peripherals covered

• Production Ready

• Quality: CodeSonarTM

• Complete

• >150 peripheral examples!

• Permissive terms

• Open source BSD license

STM32Cube
Middleware

User Code

http://www.st.com/stm32f4
http://www.st.com/stm32f4

STM32CubeL1
Hardware Abstraction Layer

CMSIS
STM32CubeF0
Hardware Abstraction Layer

CMSIS
STM32CubeF3
Hardware Abstraction Layer

CMSIS
STM32CubeF2
Hardware Abstraction Layer

CMSIS
STM32CubeF4
Hardware Abstraction Layer

CMSIS
STM32CubeF1
Hardware Abstraction Layer

CMSIS
STM32Cube

Hardware Abstraction Layer
CMSIS

STM32Cube V1
STM32CubeFx/Lx FW Package 7

• TCP/IP stack

• LwIP open source standard

• USB Library

• Host & Device made by ST

• Graphics

• STemWin from ST and
SEGGER

• File System

• FatFS open source standard

• RTOS

• FreeRTOS open source
standard (with CMSIS-RTOS
abstraction)

• >40 examples !

User Code

STM32Cube
Middleware

STM32CubeL1
Hardware Abstraction Layer

CMSIS
STM32CubeF0
Hardware Abstraction Layer

CMSIS
STM32CubeF3
Hardware Abstraction Layer

CMSIS
STM32CubeF2
Hardware Abstraction Layer

CMSIS
STM32CubeF4
Hardware Abstraction Layer

CMSIS
STM32CubeF1
Hardware Abstraction Layer

CMSIS
STM32Cube

Hardware Abstraction Layer
CMSIS

STM32Cube V1
STM32CubeFx/Lx FW Package 8

• Customer focusing on his

application differentiation

STM32Cube
Middleware

User Code

STM32Cube V1 – STM32CubeMX 9

• STM32Cube includes the

STM32CubeMX which is a graphical

software configuration tool that

allows generating C initialization

code using graphical wizards.

• Step 1: Select the microcontroller

• Through easy filtering capabilities

• Step 2: Configure the microcontroller

• Pin out wizard

• Clock tree wizard

• Peripherals and Middleware wizards

• Power consumption wizard

• Step 3: Initialization code generation

• Generates code for your favorite IDE !

Microcontroller configuration, step by step

STM32CubeTM V1 – Key Benefits
• Simplify and Speed up Application

Development for STM32!

• Through STM32CubeMX:

• MCU Selector

• Graphical Peripheral Configuration

• Power Consumption Wizard

• Peripheral Initialization Code Generation

• With automatic updater feature

• Ensuring the developer is aware of new versions
and fixes, as well as new components

• Through extensive set of “ready-to-run”
peripheral examples and application examples,
with ready project files for IAR, Keil and GCC
included in the STM32CubeFx/Lx packages

• More than Cost-friendly !

• 100% FREE embedded software!

• 100% FREE software tool !

• ST-branded, ST-supported !

• Users gain time with initialization code
generation, and remain focused on their key
application code

10

User Application

www.st.com/stm32cube

http://www.st.com/stm32cube

STM32CubeMX Overview

11

STM32CubeMX for STM32 configuration

and initialization C code generation
• The STM32CubeMX, a graphical software

configuration tool that allows to generate C
initialization C code using graphical wizards.

• STM32CubeMX has the following key
features:

• Easy microcontroller selection covering whole
STM32 portfolio.

• Board selection from a list of STMicroelectronics
boards.

• Easy microcontroller configuration (pins, clock
tree, peripherals, middleware) and generation of
the corresponding initialization C code.

• Generation of configuration reports.

• Generation of IDE ready projects for a selection
of integrated development environment tool
chains.

STM32CubeMX projects include the generated
initialization C code, STM32 HAL drivers, the
middleware stacks required for the user
configuration, and all the relevant files needed to
open and build the project in the selected IDE.

• Power consumption calculation for a user-
defined application sequence.

• Self-updates allowing the user to keep the
STM32CubeMX up-to-date.

• Downloading and updating STM32Cube™
firmware packages allowing the download from
www.st.com of the MCU firmware package
required for the development of the user
application

12

STM32CubeMX C Code generation

overview
• During the C code generation process, STM32CubeMX performs the following

actions:

• It downloads the relevant STM32Cube firmware package if it is missing from the STM32CubeMX
repository.

• It copies from the firmware package, the relevant files in Drivers/CMSIS and
Drivers/STM32xx_HAL_Driver folders and in the Middleware folder if a middleware was selected.

• It generates a Projects folder that contains the toolchain specific files that match the user project
settings.

• It generates the initialization C code (.c/.h files) corresponding to the user MCU configuration and
stores it in the Inc and Src folders. By default, the following files are included:

13

Files Description

stm32f4xx_hal_conf.h this file defines the enabled HAL modules and sets some parameters (e.g. External High Speed

oscillator frequency) to pre-defined default values or according to user configuration (clock tree).

stm32f4xx_hal_msp.c
(MSP=MCU Support package)

this file defines all initialization functions to configure the IP instances according to the user

configuration (pin allocation, enabling of clock, use of DMA and Interrupts).

main.c is in charge of:

- Resetting the MCU to a known state by calling the HAL_init() function that resets all peripherals,

initializes the Flash memory interface and the SysTick.

- Configuring and initializing the system clock.

- Configuring and initializing the GPIOs that are not used by IPs.

- Defining and calling, for each configured IP, an IP initialization function that defines a handle

structure that will be passed to the corresponding IP HAL init function which in turn will call the IP HAL

MSP initialization function.

STM32CubeMX Repository

• Downloaded software and firmware releases will be stored in the

Repository folder. The Default folder is defined in STM32CubeMX-

>Help->Updater Settings->Repository Folder.

14

C:\Users\user name\STM32Cube

STM32CubeMX Documentation
15

http://www.st.com/stm32cube

Links to various STM32Cube offering

STM32Cube: STM32CubeF0 Firmware Package

• Browse to

• C:\users\your

name\STM32Cube\Repository\

STM32Cube\STM32Cube_FW

_V1.8.0 or later

16

HAL drivers for

STM32F0xx

product family

HAL examples for

STM32F072

Discovery board

Project templates for

IAR, Keil and System

Workbench

STM32Cube FW Package Features

• STM32Cube gathers together, in a single package, all

the generic and highly portable embedded software

components required to develop an application on

STM32 microcontrollers.

• The package includes a low level hardware abstraction

layer (HAL) that covers the microcontroller hardware,

together with an extensive set of examples running on

STMicroelectronics boards.

• It also contains a set of middleware components (*)

with the corresponding examples. They come with very

permissive license terms:

• Full USB Host and Device stack supporting many classes.

• Host Classes: HID, MSC, CDC, Audio, MTP

• Device Classes: HID, MSC, CDC, Audio, DFU

• Graphics

• STemWin, a professional graphical stack solution available

in binary format and based on the emWin solution from ST's

partner SEGGER

• LibJPEG, an open source implementation on STM32 for

JPEG images encoding and decoding.

• CMSIS-RTOS implementation with FreeRTOS open source

solution

• FAT File system based on open source FatFS solution

• TCP/IP stack based on open source LwIP solution

• SSL/TLS secure layer based on open source PolarSSL

• A demonstration implementing all these middleware

components is also provided

17

(*) middleware components availability depends on STM32 Series

STM32CubeF0 Documentation

• The STM32Cube documentation vary from one STM32
series to another.

• More high-end MCUs(e.g. STM32F4) are supported by
more middleware libraries, like for STemWin graphics
library and LwIP TCP/IP Stack.

18

http://www.st.com/web/en/catalog/tools/PF260612

Demo: STM32CubeMX Overview

STM32Cube: STM32CubeMX 20

Step by step:

• MCU selector

• Pinout configuration

• Clock tree initialization

• Peripherals and

middleware parameters

• Code generation

• Power consumption

calculator

Pinout Wizard

Clock Tree wizard

Peripherals & Middleware

Wizard

Power Consumption

Wizard

STM32CubeMX
21

STM32CubeMX

Generates Initialization C Code

based on user choices !

22

STM32CubeMX: MCU Selector 23

Easy Optional filtering:

• Core

• Series

• Line

• Package

• Advanced choices…

• Peripherals choices…

MCU selector continued

• Second tab provides shortcuts to

predefined boards equipped with

STM32 MCU.

• Predefined boards come with pinouts

already assigned to use the

connections and features of the

particular board.

• Alternative board configurations are not

covered.

24

STM32CubeMX: Pinout configuration 25

• Pinout from:

• Peripheral tree

• Manually

• Automatic signal

remapping

• Management of

dependencies

between

peripherals and/or

middleware

(FatFS, LWIP,

FREERTOS, USB

etc)

STM32CubeMX: Pinout configuration 26

• Different possible states for a peripheral modes

• Dimmed:

the mode is not available because

it requires another mode to be set

(just put the mouse on top of the

dimmed mode to see why)

Dimmed:

The additional

periphery must

be selected

STM32CubeMX: Pinout configuration 27

• Different possible states for a peripheral modes

• Green:

Periphery is assigned to pinout

Green:

Periphery will

be functional

STM32CubeMX: Pinout configuration 28

• Different possible states for a peripheral modes

• Yellow:

Only some functionalities of

periphery can be used

Yellow:

On ADC only

some channels

can be used

STM32CubeMX: Pinout configuration 29

• Different possible states for a peripheral modes

• Red:

Signals required for this mode

can’t be mapped on the pinout

(see tooltip to see conflicts)

Red:

Periphery

cannot be used

in this pinout

setup

STM32CubeMX: Pinout configuration 30

• Ensure “Keep Current Signal Placement” is unchecked (by

default)

1. I2C1

selected

2. I2C1 pin

assignment

3. LPTIM1 with

external trigger

selected

4. Pin conflict

between I2C1 and

LPTIM. I2C1_SCL

moved to alternative

position

STM32CubeMX: Pinout configuration 31

• Keep User Placement renamed to Keep Current Signal

Placement and is unchecked by default

Keep Current Signal Placement

checked now CubeMX cannot

move selected signals to

different alternate pin

I2C1 cannot be moved

and LPTIM1 external

trigger cannot be used

STM32CubeMX: Pinout configuration 32

• Signals can be set/moved directly from the pinout view

• To see alternate pins for a signal Ctrl+Click on the signal, you can then

drag and drop the signal to the new pin (keep pressing the Ctrl key)

1. Ctrl+Click on pin

2. Show alternative

positions
3. Move pin to new

position

STM32CubeMX: Clock tree 33

• Immediate

display of all

clock values

• Management of

all clock

constraints

• Highlight of

errors

STM32CubeMX: Peripheral and

middleware configuration 34

• Global view of used

peripherals and

middleware

• Highlight of

configuration errors

+ Not configured

ⱱ OK

x Error

• Read only tree view on

the left with access to

IPs / Middleware

having no impact on

the pinout

STM32CubeMX: Peripheral and

middleware configuration 35

• Parameters with

management of

dependencies and

constraints

• Interrupts

• GPIO

• DMA

STM32CubeMX: Peripheral and

middleware configuration 36

• Manage Interruptions

• priorities can only be set in the NVIC

global view

• Manage GPIO parameters

• Manage DMA

• Configure all the parameters of the

DMA request

• Runtime parameters (start address, …)

are not managed

NVIC Panel 37

• Manage all interruptions

• Manage priorities and sort

by priorities

• Search for a specific

interrupt in the list

DMA Panel 38

• Manage All DMA

requests including

Memory to Memory

• Set Direction and

priority

• Set specific parameters

GPIO Panel 39

• Most of the GPIO

parameters are set

by default to the

correct value

• You may want to

change the

maximum output

speed

• You can select

multiple pin at a time

to set the same

parameter

STM32CubeMX: Code generation 40

• Generation of all the C

initialization code

• Automatic integration with

partners toolchains

• User code can be added in

dedicated sections and will be

kept upon regeneration

• Required library code is

automatically copied or

referenced in the project

(updater)

STM32CubeMX: Updater 41

• Help->Updater settings

• Choose location of STM32CubeFx firmware libraries repository

• Choose manual or automatic check

• Configure connection parameters

• Try to “Use System Proxy Parameters” first

• If it doesn’t work check with IT department

• Alternatively, manually check and download from ST website

• Help->Install new libraries : Manage the content of the library

repository

• Click on the check button to see what is available

• Select the library you want to install and click install now

• The libraries will be automatically downloaded and unzipped

STM32CubeMX: Project settings 42

• Project -> Settings

• Set project name and location

• A full folder will be created named with the project name.

• Inside this folder you’ll find the saved configuration and all the generated code

• Select toolchain (Keil, IAR, Atollic, SW4STM32)

• You can choose to use the latest version of the firmware library or a specific one

STM32CubeMX: Code Generator settings 43

• Code generator options

• Either copy the full library or only the

necessary files or just reference the

files from the common repository

• Generate all peripherals initialization

in the stm32fYxx_hal_msp.c file or

one file per peripheral

• Keep user code or overwrite it (code

between User code comment

sections)

• Delete or keep files that are not

useful anymore

• Set free pins as analog, this settings

helps keep low consumption (if

SWD/JTAG is not selected in

pinout, this option will disable it)

• Enable full assert in project, this help

discover incorrect HAL function

parameter used in user code

Code Generator options :

STM32Cube Firmware Library package 44

• Copy all used libraries into the project folder

Project Driver

Folder
CubeMX repository

Copy all driver files

from CubeMX

repository

Stored in

project_folder/Drivers/STM32XXXX_HAL_Driver folder

In project are used only peripheral files selected in CubeMX

Code Generator options :

STM32Cube Firmware Library package 45

• Copy only the necessary library files

Project Driver

Folder
CubeMX repository

Copy only files for

peripherals selected

in CubeMX

Stored in

project_folder/Drivers/STM32XXXX_HAL_Driver folder

Code Generator options :

STM32Cube Firmware Library package 46

• Add necessary library files as reference in the toolchain project

configuration file

CubeMX not copy anything from

repository.

Project use drivers from

CubeMX repository

No Driver folder in project file

Project Driver

Folder
CubeMX repository

Code Generator options:

Generate peripheral initialization as a pair

of ‘.c/.h’ files per IP
47

• By default this option is not used. All peripheral initialization code are

generated in main.c

Initialization done directly in

main.c file

Main.c

MX_GPIO_Init

MX_SPI_Init

MX_XXX_Init

…

MX_USART_Init

gpio.c

spi.c

xxx.c

usart.c

Code Generator optios:

Generate peripheral initialization as a pair

of ‘.c/.h’ files per IP

48

• Generate dedicated initialization .c and .h file for each periphery

• Advantage is that with .h file we can call MX_XXX init functions from

every file in project not only from main.c

Initialization in separated .c

and .h files called from main

…

Main.c

Project folder

Src Folder

Backup Folder

Src files

Inc Folder

Backup Folder

Inc files

Project folder

Src Folder

Backup Folder

Src files

Inc Folder

Backup Folder

Inc files

CubeMX

Backup previously generated files when

re-generating 49

• Backup old files from Src and Inc folder into Backup folder

Old files are backuped

Regenerating

Keep User Code when re-generating 50

• Generated code contains USER CODE areas

• This areas are reserved in new code generation, if this option is selected

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */
int main(void)
{
/* USER CODE BEGIN 1 */

/* USER CODE END 1 */
/* MCU Configuration--*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Initialize all configured peripherals */
/* USER CODE BEGIN 2 */

/* USER CODE END 2 */
/* USER CODE BEGIN 3 */
/* Infinite loop */
while (1)
{

}
/* USER CODE END 3 */

}

Here can user put his code,

code will be preserved during

project generation

Keep User Code when re-generating 51

• Generated code contains USER CODE areas

• This areas are reserved in new code generation, if this option is

selected

• Areas present in files generated by CubeMX

• Main.c

• Stm32l0xx_it.c

• Stm32l0xx_hal_msp.c

• Areas cover important areas used for:

• Includes

• Variables

• Function prototypes

• Functions

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

Code Generator options:

Delete previously generated files when

re-generating
52

Spi.c not used in new

configuration it is deleted by

CubeMX

Project

gpio.c

usart.c

spi.c

Project

gpio.c

usart.c

CubeMX

Regenerating

Delete spi.c

• This settings optimize power consumption of unused pins

Generating

Set all free pins as analog 53

Not used pins(grays)

will be in project

configured as analog

Project

MX_GPIO_Init

CubeMX

Initialization of unused

pins is in MX_GPIO_Init

• If the JTAG/SWD is not selected in CubeMX, MX_GPIO_Init reconfigure

JTAG/SWD pins to analog and this disable debug possibilities

• Feature very useful during debugging

• Function input parameters are checked if they are in correct range, if not

application jump into assert_failed function in main.c

Enable Full Assert 54

/* USER CODE BEGIN 2 */
HAL_GPIO_TogglePin(GPIOA,(0x1<<17));
/* USER CODE END 2 */

This function trying to

configure not existing

pin PA17

void assert_failed(uint8_t* file, uint32_t line)
{

/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */

}

If parameter is not in valid

range program jump into

assert_failed function

Advanced options 55

• API Driver Selector

• Hardware Abstract Layer –use a high

abstraction level based on standalone

processes

• Low Layer – deeply knowledge Hardware

and process flow

• Generated function Call

• The option to generate Initialization

function Call of each periphery or not.

Warning and disclaimer

• Universal design for the entire STM32 family range at times prevents

the tool from focusing on specific features of a particular product.

• The STM32CubeMX GUI tool is not a replacement for the

reference manual or datasheet

• Always refer to written documentation for further information!

• Important features are often available on the product or in the HAL but not in the

GUI.

• The GUI helps start a project and initialize a working starting

configuration – but the configuration can be dynamically changed at

runtime (i.e. GPIO, NVIC priority or clock settings).

56

STM32CubeMX: Power consumption

calculator 57

• Power step

definitions

• Battery selection

• Creation of

consumption graph

• Display of

• Average

consumption

• Average DMIPS

• Battery lifetime

Sequence

configuration

Result

overview

General PCC

configuration

panel

General PCC parameters

• MCU selection inherited from STM32CubeMX

• Use the direct link to the datasheet to get more detailed

information.

• Parameter selection

• Temperature and voltage choice may be limited, depending

on the selected MCU.

• Battery selection – select typical or define your own

• Battery is defined by capacity, voltage, self discharge and

current limitations.

• Information notes

• Purpose is to warn about estimation limitations.

58

Building a sequence 59

• A sequence is a set of ordered steps.

Create new steps

by adding or

duplicating

existingones.

Load existing

sequences and

adapt them.

Check automatically if

proposed power step

transitions are valid.

Compare

sequences, even

with different

MCUs.

Hands-on Demo : GPIO and

EXTI with STM32CubeMX

GPIO and EXTI Hands-on Demo

• Part 1: Configure a GPIO in External Interrupt mode.

Pushbutton

event

GPIO

M
U

X

CORTEX-M0+

N

V

I

C

Edge

detect

EXTI

STM32 Nucleo User Pushbutton and LEDs 62

Active High

Active Low

GPIO_EXTI

• This hands-on describes how to use the GPIO HAL APIs.
The User pushbutton, configured as input with interrupt, will be used to change
the states of the LEDs.

• For this hands-on, the STM32CubeMX will be used to generate the initialization
codes for the GPIOs and System clock. This process will speed up the
development as the initialization codes are generated by the STM32CubeMX tool.
The user then will only need to add the user codes as per application.
Recommended especially for first time users of the STM32.

• Create an new project

• Target MCU: STM32F072RBT6

• Save this project in folder below with project name: Lab-GPIO_EXTI

• C:\..\STM32F0 Discovery Exercises\Lab-GPIO_EXTI

• In the Project->Settings, same as before, make sure that the following are set:

• Project

• Toolchain/IDE: MDK-ARM V5

• Firmware Package Name and Version: STM32Cube FW_F0 V1.9.0 (or download the STM32CubeF0 latest version)

• Code Generator

• Copy only the necessary library files (to reduce the size of the project folder)

• Keep User Code when re-generating

• Delete previously generated files when not re-generated

63

Screenshots 64

Select

“STM32F072RBTx”

Step 2. Type

“STM32F072RB”

Step 1. Select

New Project

Lab-GPIO_EXTI: STM32CubeMX Config

• Objective:

• Configure the GPIOS for LEDs

• Configure the GPIO for the User pushbutton as input with interrupt(EXTI).

• Use the STM32CubeMX to configure the GPIOs accordingly:

• Pinout Tab

• GPIOs

• PA0 (User pushbutton) – GPIO EXTI0

• PC9 (LD_R - Green) – GPIO output

• Sys (System)

• Enable Serial Wire Debug (SWD)

Although the SWD debug pins are active after reset, it is a good practice to make sure the debug

pins are reserved for debug purposes while assigning pins for your application. This avoids

assigning it for other alternate function by mistake while still in firmware development stage

65

Screenshots 66

Step 3. Type

“pa0” in

Find column

Step 4. click on PA0

& select

“GPIO_EXT0”

Screenshots 67

Step 5. Type

“pc9” in

Find column

Step 6. click on PC9

& select

“GPIO_Output”

Screenshots 68

Step 7. Select

“Debug Serial Wire”

Step 6. click on PA5

& select

“GPIO_Output”

PA13 & PA14 will be

used for SWD

Lab-GPIO_EXTI: STM32CubeMX Config

• Clock Configuration Tab

• System Clock using HSI (8MHz) as clock source:

• HSI as SYSCLK clock source

• SYSCLK = HCLK(AHB) = 8MHz

• APB1(PCLK1) = 8MHz

• APB2(PCLK2) = 8MHz

69

Screenshots 70

Step 8. Click on

“Clock Configuration”

tab

Step 7. Select

“Debug Serial Wire”

Verify the System

Clock selection is

“HSI” & 8MHz

Lab GPIO_EXTI: STM32CubeMX Config cont.

• STM32CubeMX configuration cont.:

• Configuration Tab

• GPIO

• PC9 (Output Push Pull mode, no pull-up/down, Fast output speed, User Label: LD_R (green))

• PA0 (External Interrupt mode with the correct edge detection, no pull-up/down, User Label: B1

User) . Refer to schematics for the correct edge trigger.

• PA13 (Set as SWD pins. No further action. User Label: SWDIO)

• PA14 (Set as SWD pins. No further action. User Label: SWCLK)

• NVIC

• Enable External Line 4 to Line 15 interrupt with Software priority (Preemption Priortiy) set to 1.

• System tick timer - Care must be taken when using HAL_Delay(), this function provides accurate

delay (in milliseconds) based on variable incremented in SysTick ISR. This implies that if

HAL_Delay() is called from a peripheral ISR process, then the SysTick interrupt must have higher

priority (numerically lower) than the peripheral interrupt. Otherwise the caller ISR process will be

blocked.

• RCC – no further changes needed for this particular discovery board and exercise

71

Screenshots 72

Step 9. Click on

“Configuration”

tab

Step 10. Click on

GPIO

Step 8. Click on

“Clock Configuration”

tab

Step 11. Change

accordingly for PA0 &

PC9

Step 12.

Click “Apply”

Step 13. Click on

NVIC

Step 14. Check to

enable EXTI0

interrupt and set

preemption priority 1

Step 15.

Click “Apply”

Lab GPIO_EXTI: STM32CubeMX Project Setting

• Code Generator tab

• STM32Cube Firmware Library Package

• Select “Copy only the necessary library files”

• Generated files

• Select “ Keep User Code when re-generating” & “Delete previously generated files when not re-

generated”

• Project tab

• Project name

• Enter the project name and the subdirectory

• Toolchain/IDE

• Select “MDK-ARM V5” for Keil V5 compiler

73

Screenshots 74

Step 16. Click

“Project” and

select “Setting”

Step 16. Click

“Project” and

select “Setting”

Step 17. Select “Copy only

the necessary library files”

Step 18. Select “Keep User

Code when re-generating”

Step 19.

Click “OK”

Screenshots 75

Step 16. Key in

project name and

subdirectory

Step 20. Key in

project name and

subdirectory

Step 21. Select

MDK-ARM V5

Toolchain for Keil

compiler

Step 22.

Click “OK”

Lab GPIO_EXTI: STM32CubeMX Project Setting

• Save the project once all configuration are done.

• To complete, perform the following:

• Generate Report (optional)

• This will create a .pdf, .txt, and .jpg file

• Generate Code

• This will generate a project based on the Toolchain/IDE selected and all the necessary

user and library files.

• Open the KEIL MDK-ARM 5 Project (Lab-GPIO_EXTI.uvprojx)

• When the Code Generation is done, just click “Open Project”. Or you can manually

open from the specified folder.

• \..\STM32F0 Discovery Exercises\Lab-GPIO_EXTI\MDK-ARM

• Now you are ready to write some codes.

76

Lab GPIO_EXTI: Firmware Modification

• In KEIL environment, open main.c file.

• Study the generated GPIO configuration. Verify if the configurations done by

the STM32CubeMX tool are correct.

• In Main.c file -> MX_GPIO_Init ()

• In the STM32CubeMX Pinout configuration, you have only configured PA0(User

PB), PC9(LD_R), PA13(SWDIO) and PA14(SWCLK). How come there are

configurations for the other pins? What are these configurations for?

• main.c

• The STM32CubeMX tool only generates the initialization code, further modifications

of the user files (e.g. main.c, stm32F0xx_hal_msp.c, stm32l0xx_it.c) are needed to

complete the implementation.

• In the main.c file, you will find sections for user code. Copy the highlighted codes

below to the corresponding USER CODE sections in the main.c file.

• It is important the codes are copied within the USER CODE sections. This will allow

you to regenerate another initialization code using STM32CubeMX tool without

deleting the user codes.

77

Lab GPIO_EXTI: Firmware modification

cont.
• For USER CODE BEGIN 0/USER CODE END 0

/* USER CODE BEGIN 0 */

uint8_t MODE_SELECTION;

/* USER CODE END 0 */

• For USER CODE BEGIN 3 / USER CODE END3
/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

if(MODE_SELECTION==0){

/* Toggle LEDs - Use the HAL functions from stm32l0xx_hal_gpio.c file */

HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_9); //LD_R (green) – PC9

HAL_Delay(100); //100ms

}

else if(MODE_SELECTION==1){

/* Turn OFF the LEDs */

/* - Use the HAL functions from stm32f0xx_hal_gpio.c file */

/* Hint: Highlight + right click on the function and use “Go to definition…” */

HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_RESET); //Turn off LD_R(green)

HAL_Delay(100); //100ms

}

78

Lab GPIO_EXTI : Firmware modification

cont.
• Cont. For USER CODE BEGIN 3 / USER CODE END3

else if(MODE_SELECTION==2){

/* Turn ON the LED */

/* - Use the HAL functions from stm32f0xx_hal_gpio.c file */

/* Hint: Highlight + right click on the function and use “Go to definition…” */

HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET); //LD_R (green) – PC9

/* Delay - Use the HAL delay function from stm32l0xx_hal.c file */

HAL_Delay(1000); //1secs

}

}

/* USER CODE END 3 */

79

Lab GPIO_EXTI : Firmware modification

cont.

• For USER CODE BEGIN 4/ USER CODE END 4
/* USER CODE BEGIN 4 */

/**

* @brief EXTI line detection callback. The function will be call by EXTI0_IRQHandler in “stm32f0xx_it.c” .

* @param GPIO_Pin: Specifies the pins connected EXTI line

* @retval None

*/

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)

{

if(GPIO_Pin == GPIO_PIN_0)

{

MODE_SELECTION++;

if(MODE_SELECTION > 2) MODE_SELECTION=0;

/* Debounce - wait until the button is released . Read the GPIO to get the state. Refer to the schematics. */

/* - Use the HAL functions from stm32l0xx_hal_gpio.c file */

/* Hint: Highlight + right click on the function and use “Go to definition…” */

while(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) != GPIO_PIN_RESET); //Blue pushbutton – PA0

}

}

/* USER CODE END 4 */

80

Lab GPIO_EXTI: Verification 81

• Build, then Download and Debug

• Run the code

• Expected behavior:

• When User button is pressed an interrupt is triggered and will call the EXTI IRQ handler

in stm32l0xx_it.c file. The IRQ handler will then call the HAL_GPIO_EXTI_Callback()

function in main.c file where the global variable (MODE_SELECTION) will be

incremented.

• MODE_SELECTION == 0 (Default), Green LED will toggle

• MODE_SELECTION == 1, Green LED will turn off.

• MODE_SELECTION == 2, Green LED will turn on.

Lab GPIO_EXTI: Discussion (Interrupts)
• Flow of interrupt

• Pushbutton event occurs

• EXTI detects valid edge

• EXTI generates interrupt request

• If the interrupt channel is enabled, the NVIC will acknowledge the interrupt
request and checks the priority

• When priority is higher, NVIC fetches EXTI Line interrupt vector.
(Otherwise the interrupt will be set as pending until its priority becomes the
highest compared to other pending interrupts)

• Core executes EXTI IRQ Handler. Note that the handler will eventually call
a callback function where the user will have to add and write the
corresponding service routine.

82

In main.c

Main()

{

…

…

while(1)

{

…

…

…

…

}

}

In stm3fl0xx_it.c

void EXTI0_1_IRQHandler(void)

{

HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);

}

In main.c

HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
…
…
…
…

}

Pushbutton event

GPIO

M
U

X

CORTEX-M0+

N

V

I

C

Edge

detect

EXTI

In stm32f0xx_hal_gpio.c

void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)

{

/* EXTI line interrupt detected */

if(__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != RESET)

{

__HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);

HAL_GPIO_EXTI_Callback(GPIO_Pin);

}

}

Interrupt

trigger

User Code to manage the

interrupt This flow of xxx_IRQhandler calls and xxx_Callback

calls is similarly implemented for the other peripherals

when interrupt request is enabled.

Demo 1: Running Sample code on

the STM32F072 Discovery Board

84

Hands-on sample code: RTC Alarm

• Objective:
• Understand where to look for example codes in STM32Cube

• Run “RTC_Alarm” example code on STM32F072 Discovery board which trigger
turning on LED LD5 when the clock reaches the alarm setting

• Description:
• LED LD5 is connected to PC9 and and RTC is set to 00:20:00 at initial

• Alarm will be generated after 30 seconds on 02:20:30 and turns on LED LD5

• Procedure:
• Use window explorer to locate \STM32Cube\Repository subdirectory

• eg> c:\users\le-yan chin\STM32Cube\Repository

• Check for the package F0 firmware

• eg> STM32Cube_FW_F0_V1.8.0

• Copy the whole directory content to other place to retain the original firmware
package

• Go to respective \Project subdirectory you copied and click into \STM32F072-
Discovery subdirectory

• eg>
C:\Users\..\STM32Cube_FW_F0_V1.8.0\Projects\STM32F072B-Discovery

• Select “RTC_Alarm” for Keil toolchain in \..\Examples\RTC\RTC_Alarm\MDK-
ARM subdirectory

• eg>
C:\Users\..\Projects\STM32F072B-Discovery\Examples\RTC\RTC_Alarm\MDK-ARM

For IAR

For Keil

For AC6

For Atollic

85

Hands-on sample code: RTC Alarm
(cont’1)

• Procedure:

• Click to run the “Project.uvprojx” for Keil toolchain platform

86

Hands-on sample code: RTC Alarm
(cont’2)

• Procedure:

• In Keil IDE, click the “Rebuild” () icon to rebuild all the target files in the project

87

Hands-on sample code: RTC Alarm
(cont’3)

• Procedure:

• When build finish without error, click the “Start/Stop Debug” () icon to go into
debug mode

88

Hands-on sample code: RTC Alarm
(cont’4)

• Procedure:

• In Debug mode use the “Find” command to locate “aShowTime” variable

89

Hands-on sample code: RTC Alarm
(cont’5)

• Procedure:

• Move the cursor pointer to the variable “aShowTime”, right click the mouse and
select {Add “aShowTime” } to “Watch 1”

90

Hands-on sample code: RTC Alarm
(cont’6)

• Procedure:

• Expand the variable “aShowTime” in the Watch 1 to see detail value

91

Hands-on sample code: RTC Alarm
(cont’7)

• Procedure:

• Click on “View” menu and check

the “Periodic Window Update”

92

Hands-on sample code: RTC Alarm
(cont’8)

• Procedure:

• Click the “Run” () icon to run the project, observe the eShowTime variable

change in Watch 1 window

93

Hands-on sample code: RTC Alarm
(cont’9)

• Procedure:

• a) Try to modify the code only to turn on the LED LD5 when eShowTime is

02:20:20

• Hint : look for “salarmstructure.AlarmTime.Seconds”

• b) Try to change the start up time from 12:00:00

• Hint : look for “stimestructure”

Demo 2: Running the Demonstration

project on the STM32F072 Discovery

Board

95

Hands-on sample code: Demostrations

• Objective:

• Understand where to look for example codes in STM32Cube

• Run “Demostrations” example code of STM32F072 on Discovery board to test the
touchsense button, USB HID interface and Gyro sensor.

• Description:

• LED LD5 is connected to PC9 and 4 touchsense buttons are connected to
TS_G1_IO3,TS_G1_IO4, TS_G2_IO3,TS_G2_IO4,TS_G3_IO2, TS_G3_IO3

• Using User button to select different application options in the project such as
Sliding position, HID, Gyro movement.

• Procedure:

• Use window explorer to locate \STM32Cube\Repository subdirectory

• eg> c:\users\le-yan chin\STM32Cube\Repository

• Check for the package F0 firmware

• eg> STM32Cube_FW_F0_V1.8.0

• Copy the whole directory content to other place to retain the original firmware
package

• Go to respective \Project subdirectory you copied and click into \STM32F072-
Discovery subdirectory

• eg>

C:\Users\..\STM32Cube_FW_F0_V1.8.0\Projects\STM32F072B-Discovery

• Select “Demonstrations” subdirectory in \STM32F072-Discovery subdirectory

• eg>

C:\Users\..\STM32Cube_FW_F0_V1.8.0\Projects\STM32F072B-
Discovery\Demonstrations

96

Hands-on sample code: Demostrations
(cont’1)

• Procedure:

• Select project file “Project.uvprojx” to run on Keil toolchain

eg> C:\Users\..\STM32Cube_FW_F0_V1.8.0\Projects\STM32F072B-
Discovery\Demonstrations\MDK-ARM\project.uvprojx

97

Hands-on sample code: Demostrations
(cont’2)

• Procedure:

• In Keil IDE, click the “Rebuild” () icon to rebuild all the target files in the
project.

98

Hands-on sample code: Demostraions
(cont’3)

• Procedure:

• When build finish without error, click the “Start/Stop Debug” () icon to go into
debug mode

99

Hands-on sample code: Demostrations
(cont’4)

• Procedure:

• Click the “Run” () icon to run the project.

100

Hands-on sample code: Demostrations
(cont’5)

• Procedure:

• Press User button B1 1st time

• Change the Discovery board level position to see the LEDs on change.

• eg LED LD4 turns on shows the board level swing to left, opposite swing direction will turn
on LED LD5; similarly LED LD3 turns on shows board level swing to front and opposite
direction will turn on LED LD6

• Press User button B1 2nd time, LED LD3 and LD6 turns on

• Connect a mini-USB cable at the USB User socket

• The movement of the Discovery board will take control of the PC mouse pointer

• Press User button B1 3rd time, all LED turns off

• Slide the touchsense buttons and observe the LEDs on/off changes; indicating the
position of the finger sliding

